3.459 \(\int \frac{\sqrt{b \sec (e+f x)}}{(a \sin (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=95 \[ \frac{2 \sqrt{\sin (2 e+2 f x)} F\left (\left .e+f x-\frac{\pi }{4}\right |2\right ) \sqrt{b \sec (e+f x)}}{3 a^2 f \sqrt{a \sin (e+f x)}}-\frac{2 b}{3 a f (a \sin (e+f x))^{3/2} \sqrt{b \sec (e+f x)}} \]

[Out]

(-2*b)/(3*a*f*Sqrt[b*Sec[e + f*x]]*(a*Sin[e + f*x])^(3/2)) + (2*EllipticF[e - Pi/4 + f*x, 2]*Sqrt[b*Sec[e + f*
x]]*Sqrt[Sin[2*e + 2*f*x]])/(3*a^2*f*Sqrt[a*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.153644, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2584, 2585, 2573, 2641} \[ \frac{2 \sqrt{\sin (2 e+2 f x)} F\left (\left .e+f x-\frac{\pi }{4}\right |2\right ) \sqrt{b \sec (e+f x)}}{3 a^2 f \sqrt{a \sin (e+f x)}}-\frac{2 b}{3 a f (a \sin (e+f x))^{3/2} \sqrt{b \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*Sec[e + f*x]]/(a*Sin[e + f*x])^(5/2),x]

[Out]

(-2*b)/(3*a*f*Sqrt[b*Sec[e + f*x]]*(a*Sin[e + f*x])^(3/2)) + (2*EllipticF[e - Pi/4 + f*x, 2]*Sqrt[b*Sec[e + f*
x]]*Sqrt[Sin[2*e + 2*f*x]])/(3*a^2*f*Sqrt[a*Sin[e + f*x]])

Rule 2584

Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(a*Sin[e +
 f*x])^(m + 1)*(b*Sec[e + f*x])^(n - 1))/(a*f*(m + 1)), x] + Dist[(m - n + 2)/(a^2*(m + 1)), Int[(a*Sin[e + f*
x])^(m + 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 2585

Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(b*Cos[e + f*
x])^n*(b*Sec[e + f*x])^n, Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, m, n}, x] &&
 IntegerQ[m - 1/2] && IntegerQ[n - 1/2]

Rule 2573

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{b \sec (e+f x)}}{(a \sin (e+f x))^{5/2}} \, dx &=-\frac{2 b}{3 a f \sqrt{b \sec (e+f x)} (a \sin (e+f x))^{3/2}}+\frac{2 \int \frac{\sqrt{b \sec (e+f x)}}{\sqrt{a \sin (e+f x)}} \, dx}{3 a^2}\\ &=-\frac{2 b}{3 a f \sqrt{b \sec (e+f x)} (a \sin (e+f x))^{3/2}}+\frac{\left (2 \sqrt{b \cos (e+f x)} \sqrt{b \sec (e+f x)}\right ) \int \frac{1}{\sqrt{b \cos (e+f x)} \sqrt{a \sin (e+f x)}} \, dx}{3 a^2}\\ &=-\frac{2 b}{3 a f \sqrt{b \sec (e+f x)} (a \sin (e+f x))^{3/2}}+\frac{\left (2 \sqrt{b \sec (e+f x)} \sqrt{\sin (2 e+2 f x)}\right ) \int \frac{1}{\sqrt{\sin (2 e+2 f x)}} \, dx}{3 a^2 \sqrt{a \sin (e+f x)}}\\ &=-\frac{2 b}{3 a f \sqrt{b \sec (e+f x)} (a \sin (e+f x))^{3/2}}+\frac{2 F\left (\left .e-\frac{\pi }{4}+f x\right |2\right ) \sqrt{b \sec (e+f x)} \sqrt{\sin (2 e+2 f x)}}{3 a^2 f \sqrt{a \sin (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.432101, size = 75, normalized size = 0.79 \[ \frac{2 \cot (e+f x) \sqrt{b \sec (e+f x)} \left (\left (-\tan ^2(e+f x)\right )^{3/4} \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{3}{2};\sec ^2(e+f x)\right )-1\right )}{3 a^2 f \sqrt{a \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*Sec[e + f*x]]/(a*Sin[e + f*x])^(5/2),x]

[Out]

(2*Cot[e + f*x]*Sqrt[b*Sec[e + f*x]]*(-1 + Hypergeometric2F1[1/2, 3/4, 3/2, Sec[e + f*x]^2]*(-Tan[e + f*x]^2)^
(3/4)))/(3*a^2*f*Sqrt[a*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.135, size = 279, normalized size = 2.9 \begin{align*}{\frac{\sqrt{2}\sin \left ( fx+e \right ) }{3\,f} \left ( 2\,\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) \sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}{\it EllipticF} \left ( \sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}},1/2\,\sqrt{2} \right ) +2\,\sin \left ( fx+e \right ) \sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}{\it EllipticF} \left ( \sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}},1/2\,\sqrt{2} \right ) -\sqrt{2}\cos \left ( fx+e \right ) \right ) \sqrt{{\frac{b}{\cos \left ( fx+e \right ) }}} \left ( a\sin \left ( fx+e \right ) \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*sec(f*x+e))^(1/2)/(a*sin(f*x+e))^(5/2),x)

[Out]

1/3/f*2^(1/2)*(2*sin(f*x+e)*cos(f*x+e)*((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e)
)/sin(f*x+e))^(1/2)*((-1+cos(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),
1/2*2^(1/2))+2*sin(f*x+e)*((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))
^(1/2)*((-1+cos(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))-
2^(1/2)*cos(f*x+e))*(b/cos(f*x+e))^(1/2)*sin(f*x+e)/(a*sin(f*x+e))^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{b \sec \left (f x + e\right )}}{\left (a \sin \left (f x + e\right )\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(f*x+e))^(1/2)/(a*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e))/(a*sin(f*x + e))^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{b \sec \left (f x + e\right )} \sqrt{a \sin \left (f x + e\right )}}{{\left (a^{3} \cos \left (f x + e\right )^{2} - a^{3}\right )} \sin \left (f x + e\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(f*x+e))^(1/2)/(a*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

integral(-sqrt(b*sec(f*x + e))*sqrt(a*sin(f*x + e))/((a^3*cos(f*x + e)^2 - a^3)*sin(f*x + e)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(f*x+e))**(1/2)/(a*sin(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{b \sec \left (f x + e\right )}}{\left (a \sin \left (f x + e\right )\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(f*x+e))^(1/2)/(a*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e))/(a*sin(f*x + e))^(5/2), x)